
Br. J. clin. Pharmac. (1989), 28, 655-662

Testing for bimodality in frequency distributions of data
suggesting polymorphisms of drug metabolism-hypothesis
testing

P. R. JACKSON, G. T. TUCKER & H. F. WOODS
University Department of Pharmacology and Therapeutics, Royal Hallamshire Hospital, Sheffield S1O 2JF

1 The theory of methods of hypothesis testing in relation to the detection of bimodality
in density distributions is discussed.
2 Practical problems arising from these methods are outlined.
3 The power of three methods of hypothesis testing was compared using simulated data
from bimodal distributions with varying separation between components. None of the
methods could determine bimodality until the separation between components was 2
standard deviation units and could only do so reliably (> 90%) when the separation was

as great as 4-6 standard deviation units.
4 The robustness of a parametric and a non-parametric method of hypothesis testing was
compared using simulated unimodal distributions known to deviate markedly from
normality. Both methods had a high frequency of falsely indicating bimodality with
distributions where the components had markedly differing variances.
5 A further test of robustness using power transformation of data from a normal
distribution showed that the algorithms could accurately determine unimodality only
when the skew of the distribution was in the range 0-1.45.
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Introduction Applying statistical tests to graphical displays

We have previously considered the use of
graphical methods to detect polymorphisms of
drug metabolism from in vivo data (Jackson et
al., 1989). Although these techniques can be
used as an initial screen to identify the presence
of bimodality in frequency distributions they
cannot be used to test the strength of the hypo-
thesis that two or more populations are present.
Hypothesis testing requires a statistical test of
the goodness of fit of the data to a theoretical
distribution. Such testing generally assumes that
the data are normally distributed.

The application of the chi-square test to data in
the form of histograms is the simplest method
of testing for goodness-of-fit to a distribution.
The mean and variance of the data are calculated
and the number of subjects to be found in each
cell is determined from the theoretical shape of
the distribution. The chi-square test is then used
to show whether the differences between the
observed and predicted numbers in each cell
could have arisen by chance. However, as sug-
gested previously (Jackson et al., 1989), the
form of the histogram may be sensitive to the
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positioning of the data cells and the distribution
is invariably assumed to be normal or log-normal.
The first of these problems is overcome by using
the Kolmogoroff-Smimov test (Kolmogoroff,
1941), which checks goodness-of-fit of the
cumulative distribution to that of the predeter-
mined distribution over a given range. A prac-
tical method of implementing both the chi-square
and the Kolmogoroff-Smimov tests is to increase
the number of components of the distributions
until the null hypothesis of an acceptable fit is
not rejected. Fitting a multicomponent distribu-
tion to the data requires a method of estimating
the means, variances and relative contributions
of the component distributions. This may be
done, for example, by applying the expectation
maximization (EM) algorithm (Dempster et al.,
1977) as outlined by Everitt (1981).
Although the fit of the data may deviate in-

significantly from a mixture of two normal dis-
tributions whilst being significantly different from
the single normal distribution, this may follow
from the use of more parameters alone and
does not necessarily imply a significantly im-
proved fit to the bimodal distribution.

Direct application of hypothesis tests

Maximum likelihood methods A method of
checking statistically whether the data are best
described by two distributions rather than one
is to use a maximum likelihood fitting technique.
The likelihood function of the whole data set is
calculated as the multiplicand of the likelihoods
of each individual datum point predicted by
the distribution. Standard Newton-Raphson
(Fletcher, 1980) or Nelder Mead simplex
(Nelder & Mead, 1965) algorithms can be used
to alter the parameters of the distributions to
maximise the likelihood of the data according
to the particular model. To determine whether
the maximum likelihood achieved by a model
with a mixture of two or more distributions is
significantly superior to that achieved with a
single distribution the value of twice the log of
the ratio of maximum likelihoods is estimated.
This is claimed to be distributed as chi-square
at a number of degrees of freedom equal to the
difference in the number of parameters between
the two models (Wilks, 1938). However, as both
Wolfe (1971) and Binder (1978) have pointed
out, according to the null hypothesis the con-
tinuity assumptions as laid down by Wilks (1938)
are violated. Binder (1978) suggested an alter-
native index for testing the probability of one
distribution vs two with common variances,
the suitability of which was subsequently con-
firmed by Everitt (1981) using Monte Carlo
simulation.

Practical problems of model fitting When
determining the maximum likelihood for the
data according to a model comprising a mixture
of two distributions occasional data sets cause
the likelihood to increase monotonically towards
infinity. This failure occurs when the value of
one observation is selected by the algorithm as
the mean of one component distribution. The
likelihood of this data point, and hence the total
data set, increases towards infinity as the variance
of the distribution centred at that point falls
(Murphy & Bolling, 1967). To prevent this
happening an artificial constraint on the variance
parameters is needed. The simplest solution is
to make the variance of both component distri-
butions equal. However, this may make the test
less conservative by reducing the maximum
likelihood when the data are fitted by the sum
of two distributions. Evans et al. (1983) used an
alternative approach, making an initial estimate
of the parameters of the distribution using the
graphical method of Bhattacharya (1967), and
then performing a local search in this constrained
area to find the point of maximum likelihood.

In an attempt to overcome the limitations of
using only normal distributions (Jackson et al.,
1989) Maclean (1976) performed a power trans-
formation on the index prior to fitting the data
with normal distributions. This has the effect of
providing good fits of normal distributions to
unimodal but skewed data sets. The use of such
transformations does have limitations, demand-
ing that the degree of skew of each individual
component is identical, and distorting the vari-
ances of the component distributions to dif-
ferent extents depending upon their mean values.
Nevertheless this modification does prevent the
selection of a model with two distributions to
fit the data simply to accommodate skew within
a data set derived from a unimodal distribution.
On the other hand, it cannot be guaranteed that
the modified likelihood ratio suggested by
Everitt (1981) will be as useful in distinguishing
between models using the maximum likelihood
method with power transform (mlpt). Another
disadvantage of using a transformed index is
that the two-step method of Evans et al. (1983)
used to prevent the variance parameters ap-
proaching zero cannot be applied and an alter-
native constraint must be introduced to prevent
one of the variances approaching zero.
Kao (1959) suggested an alternative theo-

retical distribution which was subsequently fitted
to pharmacogenetic data by Jack (1983). This is
the flexible distribution of Rosin, Rammler,
Sperling and Weibull (RRSW) (equation 1).

f(x) = ex_ Q) -0 equation 1cx
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where 0 = (x -fQ)
and Ql is the position parameter

a is the scale parameter
a is the shape parameter.

This distribution accommodates skew in the data
of either a positive or a more limited negative
extent. If the data are fitted using more than
one distribution each component may be skewed
to a different degree. The possibility of singu-
larities arising as the scale parameter (at) ap-
proaches zero is reduced as the terms inside and
outside the exponentiation (equation 1) move
in opposite directions as the value of the scale
parameter falls. Some constraint may be re-
quired on the value of the location parameter
(fQ) to maintain the term within the central
brackets (x - Q) above zero.

Non-parametric methods of hypothesis testing
Another method of hypothesis testing for bi-
modality which does not make assumptions
concerning the underlying distribution of the
data was suggested by Silverman (1981). Each
datum point is represented by a kernel, in this
case a small normal distribution. The kernels
are then summed to describe the likely popu-
lation distribution from which the data was
originally sampled. The parameter, Hcrit, which
determines the spread of the individual kernels,
is adjusted to the minimum value sufficient to
produce a unimodal population distribution. To
test the hypothesis that the sampling distribution
is unimodal a bootstrap technique is used.
Samples, of the same size as the data set, are
taken at random from the observations with
replacement (i.e. some points may be sampled
more than once). An error term is added to
each sample point, the kernels of this new set
of points are summed, and the modality of this
distribution is determined. If the original sample
has arisen from a bimodal parent distribution
the value of Hcrit would have to be large to
produce unimodality. Thus, when this same
value of Hcrit is applied to the simulated boot-
strap samples from the smooth unimodal distri-
bution a higher than expected proportion will
be unimodal. Arbitrarily 95% of samples are
expected to be unimodal and when the propor-
tion falls below this the null hypothesis, under
which the parent distribution is unimodal, is
accepted. This method may be extended to
examine the data for any number of modes by
determining a new value of Hcrit for that number
of modes and testing the proportion of boot-
strap samples having c n modes. In practice

the null hypothesis is tested by increasing the
modality until a number of modes is discovered
at which the hypothesis is not rejected.

Scaling A problem in detecting bimodality in
a density distribution is the scaling of the obser-
vations. Intuitively it would appear that the
graphical and maximum likelihood methods,
based on fitting normal distribution, are most
likely to be sensitive to changes of scale. Limit-
ations of the power transform and the shapes of
the Weibull distributions may make the other
maximum likelihood techniques scale sensitive.
Experimental data from a study (McGourty et
al., 1985) of the population distribution of the
urinary drug/metabolite ratio for debrisoquine
and metoprolol of man indicate that even the
kernel density method of Silverman (1981) may
be sensitive to transformation of the data. Thus,
when the urinary drug/metabolite ratio data
were presented to the algorithm the null hypo-
thesis of unimodality was not rejected, yet
when the data were log transformed bimodality
was indicated (Jackson, 1988).
The effects of scaling are not only due to

deficiencies of the algorithms, since transfor-
mations of scale can alter the modality of a
distribution. Analytical proof of this is difficult
but using simulation techniques the extent of
alterations may be illustrated (Jackson, 1988).
Figure la, b shows the same simulated distri-
bution plotted on linear and log scale respec-
tively. Whereas the linear plot is unimodal, it
is clear that log transformation produces marked
bimodality. This is because transformations of
probability density functions requires multipli-
cation by the first derivative of the transforming
function (Lindgren, 1968) unlike changes of
scale with simple graphs.
We have used a computer simulation to in-

vestigate the power of the various methods of
hypothesis testing for the modality of unknown
distributions from which samples are available.
In addition the effects of deviations from nor-
mality on the results obtained with the different
methods were examined.

Methods

Evaluation of statistical power

Pseudo-random samples, each of 100 points,
were generated from a mixture of two normal
distributions. The algorithm NAG GO5DDF
was used to produce random numbers from a
normal distribution and NAG GOSCAF was used
to allocate each number at random to one of
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a

Figure 1 (a) A skewed distribution (generated from the sum of two normal distributions) and (b) its
log transformation.

the components according to the mixing pro-
portion. The separation between the means
of the distributions, expressed as the common
variance, was varied from 2-6 standard deviation
units. The samples were then fitted by para-
metric models (Murphy & Bolling, 1967) of
single or double normal distributions trans-
formed by a power factor (Maclean et al., 1976).
The values for the means, common variance,
mixing proportion and power transform factor
were determined using the Newton-Raphson
algorithm NAG E04CCF to produce a model
with maximum likelihood for the data. The
fitting procedure was repeated with models of
one and two component distributions. The mix-
ing proportions were constrained to allow an
area under the total curve of unity and the
power transform factor was constrained to have
a value of between -10 and + 10. The test
statistic described by Everitt (1981), based on
the Naperian log of the ratio of the likelihoods,
was then compared with a chi-square distribu-
tion. The 5% level was taken as being signifi-
cant. The same samples were then subjected to
the Silverman algorithm and again the 5% level
was taken as significant. Each procedure was
repeated 100 times with different generated
samples. In a separate series of simulations the
power of the maximum likelihood Weibull
method was tested in the same way using the
same NAG algorithms to generate the data sets
but using a computer with a different word
length. The mixing proportions were again con-
strained to keep the total probability equal to
unity and the shape, scale and position para-
meters in the range 0-100.

Sensitivity to deviations from normality

To determine the sensitivity of the transformed
maximum likelihood and kernel density methods

to deviations from normality simulations were
performed using a series of samples from a
number of unimodal distributions constructed
from the sum of two normal distributions. To
ensure unimodality the parameters of the mix-
ture distributions and their mixing proportions
were constrained within the limits described by
Behboodian (1970). These samples were then
tested for their modality using the kernel density
and maximum likelihood with power transform
methods as described previously. In a more
rigorous investigation of the sensitivity to non-
normality of these two methods, samples from
distributions with a wide range of skews were
tested and the effect of prior log transformation
of the data was studied. Samples of 100 data
points were generated from random normal dis-
tributions using the subtractive algorithm of
Knuth (1981) followed by the Box-Mueller
algorithm (Press et al., 1986). These variates
were then transformed using the Maclean power
transform to produce samples from distributions
with skew values between -3 and +10. The
samples were examined using the kernel density
and mlpt algorithms with and without prior log
transformation.

Results

Two power curves generated by the kernel den-
sity and mlpt methods were parallel between
a separation of 2 and 4 standard deviations, the
kernel method being slightly less powerful
(Figure 2). When the Weibull maximum likeli-
hood method was tested in a similar fashion this
appeared to be more conservative than both the
mlpt and kernel density methods (Figure 3).
This became more apparent as the separation
between the components of the sampled distri-
bution increased.
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Figure 2 The percentage of samples from a mixture distribution found to be bimodal by the mlpt (V)
and kernel density (+) methods in relation to the separation (expressed as standard deviation units)
between the means of the components of the mixture distribution from which the samples were taken.
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Figure 3 The percentage of samples from a mixture distribution found to be bimodal by the maximum
likelihood method using a Weibull distribution in relation to the separation (expressed as standard
deviation units) between the means of the components of the mixture distribution from which the
samples were taken.
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Table 1 Parameter values for theoretical mixture
distributions and the percentage of samples found to
be bimodal according to the kernel density (kd) and
power transformed maximum likelihood (mlpt)
methods applied at the limit of bimodality according
to Behboodian (1970). u1 and U2 are the standard
deviations of the components and -y is the mixing
proportion.

1ll 072 y mlpt kd

1. 2. .1 8 38
1. 2. .2 7 23
1. 2. .3 5 20
1. 2. .4 4 10
1. 2. .5 2 13
1. 2. .6 5 9
1. 2. .7 10 8
1. 2. .8 7 5
1. 5. .i 72 88
1. 5. .2 78 69
1. 5. .3 90 48
1. 5. .4 87 28
1. 5. .5 58 25
1. 5. .7 10 17
1. 5. .8 5 11
1. 5. .9 1 9
.691 .691 .1 5 20
.7685 .7685 .2 2 18
.838 .838 .3 4 23
.9119 .9119 .4 6 17
1. 1. .5 9 4

The mlpt and kernel density methods were
both sensitive to distortions of the distributions
from normality (Table 1) although the kernel
density method appeared somewhat more
conservative in keeping with its lower power.
Bimodality was falsely indicated in a high pro-
portion of the simulations using power trans-
formations when large positive or negative
skews were present (Table 2). The proportion
of samples with low negative skews incorrectly
assigned as being bimodal by the mlpt method
was significantly reduced by log transformation
of the data. Without transformation the algo-
rithms were accurate only over a limited range
of skew values. When the distributions were
normal the algorithms, especially the mlpt
method, were probably too conservative.

Discussion

Statistical proof of bimodality in distributions of
known form is difficult. The problem is com-
pounded further when the genetic basis of the
distribution of characteristics within a popu-
lation is unknown. Additional difficulties are
introduced by the use of experimental indices

(log urinary drug/metabolite ratios) remote
from the factor (enzyme) which is under genetic
control. We suggest that transformations should
only be performed if there are strong a priori
reasons for doing so. It appears that the choice
of the log urinary drug/metabolite ratio of
debrisoquine was selected simply because it
improved the separation of extensive and poor
metaboliser subjects (Mahgoub et al., 1977;
Tucker et al., 1977).
There may be valid a priori reasons for log

transformations of such data. If epistasis (multi-
plicative gene interaction) is present then log
transformation will 'normalise' the distribution
(Powers, 1951). The problem then is when to
assume epistasis.

Choosing the best method

The simulation exercise has revealed that all of
the methods available to detect bimodality in
distributions from which data are sampled are
not particularly powerful and are sensitive to
skew within the distribution. Although the non-
parametric kernel density method makes very
few assumptions about the form of the distri-
bution it is nevertheless sensitive to certain
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Table 2 The percentage of simulations found to be bimodal by the
kernel density [kd] and mlpt methods when samples were drawn
from a single normal distribution and then skewed using the power
transform of Maclean et al. (1976) with different values of the
power factor TR. The results are also given for the effect of log
transforming the data prior to submission to the algorithms (Lmlpt
and Lkd).

% simulations found to be bimodal
TR skew mlpt kd Lmlpt Lkd

-2.5 -31.5 98 97 90 100
-2.0 -31.5 99 95 82 100
-1.5 -20.0 97 94 78 100
-1.0 -2.28 100 93 81 100
-0.5 -2.01 93 79 67 100
0.0 -0.99 84 72 17 100
0.5 -0.46 38 35 11 100
1.0 -0.01 6 2 7 100
1.5 0.39 0 3 1 100
2.0 0.65 0 16 9 99
2.5 1.16 0 26 37 95
3.0 1.45 16 39 70 84
3.5 1.90 60 51 82 66
4.0 2.21 83 71 75 59
4.5 2.65 93 72 78 46
5.0 3.18 97 78 72 39
5.5 4.36 99 81 63 39
6.0 4.19 99 83 73 28
6.5 5.70 100 94 67 28
7.0 4.90 100 90 68 35
7.5 4.90 100 92 63 28
8.0 8.37 100 95 61 29
8.5 10.80 100 93 54 43
9.0 8.40 99 95 54 43
9.5 20.10 100 96 49 50

10.0 30.6 100 97 41 37

distribution profiles. It is also scale sensitive
and relatively expensive in computer time. The
mlpt method appears to be as robust and slightly
more sensitive. With certain data sets the results
of the two methods may diverge because they
are testing slightly different hypotheses. The
kernel density method tests a hypothesis based
on the number of modes in the parent distribu-
tion whereas the mlpt method tests whether the
sample is best fitted by one or more distributions
independent of the modality of the distribution
from which the sample is drawn. We believe
that because the genetic mechanisms by which
variability of enzyme activity is produced are
unknown, assumptions as to the form of the dis-
tribution in the population are unwarranted and
likely to lead to the spurious over-diagnosis of
polymorphism. Furthermore as a general point
we suggest that the diagnosis of a polymorphism
should only be made when a distribution is
shown to be bi- or multimodal. Diagnosis of the
phenomenon from in vivo data is virtually im-

possible if these data are merely non-normally
distributed.
To prevent skew within the data giving rise

to a false indication of bimodality it might be
sensible to check the skew of each data set prior
to presentation to the algorithms.

If frequency histograms of experimental data
or transformations of such data indicate that the
components are normal the mlpt method is pre-
ferred for establishing bimodality since it re-
quires less computer time. However, when the
form of the underlying distributions is not known
the non-parametric kernel density method may
be superior. Both approaches may fail if the
component distributions have markedly dif-
ferent variances or the summed distribution
is highly skewed, unless a variance stabilising
transformation is applied.

Computer Hardware for this study was kindly sup-

ported by donations from the University of Sheffield
Research Fund and thc Hallamshire Therapeutics Trust.
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